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A ]IOVC1 mdl)d for cxnnbining  dccisio]l  trcws
a]ld kcn)d dmlsity  cstlimators  i s  ]woposcd.
Sta]ldard  classification]) tmcs,  or class prob
al)ility  trms, ]movidc piuwwisc  constant esti-
mates of class posterior ]mobabilitlics. Kcr-
I)C1 dmlsity  estimators can ])rovidc  smooth
]Io]l-])alalllct]ic  estimates of class probali-
itics,  l)ut scale ])oorly  as the dilncl]sional-
ity o f  tllc ])roblcm illcrcascs. ‘J’his palm
dismsscs  a  l)ylnid  sclIcIIlc  whicl] uscx deci-
sion trees to find t,llc rclcwal)t s t ructure ill
IIig]l-(li]llc]lsio]lal  classification lnoblmns  and
tllml uses local km)cl density esti]nat,cs to
fit Slnootl) ]mobability  cstilllates within  t h i s
structure. IJxlmrilnclltal  mmlts 011 simulated
da ta  indicate that tl)c mctllod  ~wovidcs sub
stalltial i]nlmwmncl]t  over trees or clmlsity
]I]etllods alo]lc for ccrtaill  c lasses of  ]mob-
lmns. ‘1’llc I)al)cr  briefly discusses various cx-
tcllsiolls  of tllc basic  a])lnoacll  and t,llc types
of a]q)]icatiou  for wllicll tllc ]nctllod is Lest
suitd.

1 INTRODUCTION

‘1’lIcrc  l)as l)CCII co~lsidcraldc i]ltcrcst  ill rcccnt  years ill
tllc usc of dccisio]l  trees for classification and rcgrcY-
sio]l  l)roblcIns. ])ccision  tree design algorith]  m have
lxx!])  dcvclo])cd ill lmtll  tllc stat is t ical  and ]nachillc
lcarllillg  co]lllnwlitics  (Ilrci]]lall d al. 1 984; Qui]llall
1992) atld llavc succmsfully  co]npctcd  with alternative
IIc)]l-]):l]alll(:tric  modclling  tccl)niqucs  (such as fccdfol -
ward ]Icural Ilctworks).

A kcy advantage of the decision tree approach over
co]nlwtill.g  ]]lodcls  i s  tllc Illl(lcrstall [lability o f  tllc
Illo(lcl. A dccisioll tree using ullivariatc  uodc-sldits
is rdativcly easier to comprcllc]ld  tlla]l  models SUC1l
as ]lcura] networks. ‘1’llis Illlclcrstallclal)  ility is a ma-
jor cmlt,ril rotor (0 tllc widcs]~rcad  usc of decision t mm
in I)otll tllc ]nacllillc  lcarllillg  a]lcl app]icd s t a t i s t i c s

coml [lunitics, ratllt-] tllall  ally inherent capability of
the clccision  tree ]tlodcl to outperform Otllcr prcclic-
tio]] ]noclcls.  II) fact, dccisioll tree moclcls  call oft,cn bc
sligl]l  ly less accurate than competing models in terms
of p Cdictioll (si]lcf the functional form of the model
is scvcrcly collstrailld) atld yet I )c ]Jrcfcrrcd as the
modt 1 of choice for a ] mr~icular apldicatiol~  bccausc  of
the (xplicit  Ilaturc  of the Inodcl. ‘1’his is the starting
l)oil]i for tllc work ill this pa])cr. (livcm that  there
arc :L variety of well-cstablishccl clccisiou tree lcarn-
in.g illgo~itll]]ls SUCII  as CAIU’  and C4 in widcsprcacl
use, the idea of usi I lg locally flexible prediction cm-
bcdclcd  witliiu tllc ovcrdl tree structure to improve
the local prcdictio]] accuracy of the model is cxp]orccl.
In l):wticular,  wc i] Ivcst igatc  the usc of kcmcl  density
csti]llation  tcclll]iqllrs  to imlmovc  the class lmobability
prcd iction cal)al.)ilit  ics of existing decision trees: llcncc,
the ‘rcf,rofittillg”  ill tllc title of the pal)cr.

1110 rtain classificat  imi q)]dicatio]ls  it is often impor-
tant that, .givell tll(’ itl])utl feature data, the classifier
lHXXI ucc accal  atc cstill]atcs  of ~)ostcrior  class prol>a-
bilit its, ratl]cr  tl]a] I siln])ly the label of tllc most likely
class. In sImdI I ccogllitio~l for cxamldc,  tllc classifica-
tion compollcllt  ]nay bc cmbccldd within a larger con-
tcx~ model (ty]  )ical] y a hidden Markov model) which
uses tllc local classification ]mobabilitics  tc) illfcr the
Iaost likely scquc]lcc of states. More generally, pos-
terior  ]Wobabilitics  arc useful ill applications such as
]ncxlical  diagnosis wllcrc a decisions involving mcqual
]Ilisflassificatic)ll  costs ]]mst  hc maclc. It is often the
case that tllesc  cclsts am not known l)rcciscly in ad-
van(c  or may cllallp,c over tilnc.  II) such cases the best
ihc classifier dcsigplm can do is l)rovidc the clccision
maker with cstilnat  m of class ]nobabilitics.

‘1’hc sta]ldard  ap] mmcll  to ])roduci]lg a c c u r a t e  pos-
tcri[m class ~)robal)ilitlics  frcml classification trees is
lolown as class p70bab21ity  trees: cmc counts  the pro-
]KH( ions frol]  L cacl  I c las s  which arc present  at  the
leaf nodes, l)ascd 0]1 tllc training data, and .gcnmatcs
a local lnaxitnum  likelihood estimate (or perhaps a
sm(mt,hcd varial  [t) of the posterior class probabilities.
‘1’hc goal of this  lm] ml is to snow that these colWm-
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timla]  cs{ilnatcs  call h ilnlmwcd  upon by combining
kmlc] dmlsity  cxtilnaticnl  ]nctllods  with decision trees.

‘1’llc lmpcr  bcgills by reviewing ihc basic concepts of
km)cl dmlsity  cstimatimlj  focusing ill particular on the
lilnitatiol)s  of tl]c ll]c!tl]od wIIC]l  applied to multivari-
ate classification. All algoritl)ln  is clcscribcd for com-
bil]illg dmisity  cstilnatioll with classificaiicnl trees. h;x-
l)crilllcllt,al results ml sylltllctic  data arc  discussed: tl]c
hybrid dcllsity-tree al)l)macll  is shown to l)roviclc  sig-
nificantly  be t t e r  lmobability  estilnation  pcrformallcc
tllall citllcr tllc class lmbal~ility  tree or the kcr]lcl
dcvlsity lnctllods  ml tllcir  own. Furtllcnnorc, analyz-
ing tile class l~robability  estimation lmoldcm  frolll a
ker]lcl dcllsity  vicwqmillt  call l)rovidc some itltcrcst-
illg insig]lts  into  cstilnation aspcds  o f  ciccision tree
dcsigll. Various extensions (suc]l as IIaycxiau and/or
ol)tiol] t rees)  arc  hidfy  cliscusscd  and links to otjllcr
(Iilllcllsiol]-lcclllctioll  tcclll]iqucs  combillcd  w i t h  den-
sity cstilnat,ion  arc lncntioncd.

‘1’l)c focus of this l)al)cr is oll tllc case of numeric (rcal-
valud)  attributes or fcatums,  ratlhcr than the categor-
ical or discrctc  case: dcnlsity cstilllatiml  tccllniqucs  arc
]Nucll Iaorc  relcvalltl for nulncric  data,  T’hc mcthocls
Inol)oscd ill t,llc I)al)cr  can bc directly cxtcndcd  to han-
cllc Iuixd (iisclctc/catcgol’ical/lllllllclic data. 11) addi-
tion,  the focus of this l)al)cr is 011 the tree-retrofitting
I mol.hn: addiug  dcnsitly cstilnatcs to a classification
tree w]licll was dcsigllcd  ill a stal~dard  IIlanllcr. ‘1’llcrc
arc  obvious cxtcllsiol)s  of dmlsity  estilnatio]l  to the dc-
szg7L (or csfimafion) ])llasc of tree-1.mi]ding: these arc
bridly discussed wl)crc al)lwol)riatc  but  arc not t,hc fo-
c u s  o f  tllc l)rcscllt  I)al)cr.

2 A Ii,ItV.112 W OF KERN]?].
DENSITY ESTIMATION

Nol~-l)aralnctric  l)robabi]ity  density estimation tech-
niques  IIavc I.mc]l  studied in statistics sillcc the late
1 950’s. ‘1’cxts  by ]Iand  (1 982), Silvcrlnan  (1 986)  ancl
Scott, (1 992) all l)rovidc cxccllcnt  overviews of density
cstilnatioll with clnl)llasis  oll both theory ancl applica-
tion.  lzclllnallll  (I 991) l)rovidcs a thorough ovcxwicw
of rcccllt  lmo.grcss  on tllcorctical aspects of clcllsity cs-
tilnatiml.

J{cI?Lc1- kscd dm]sity cstilnatioll  is tllc most widely
lwacticed  dmlsit,y cstilnatiml  tcchlliquc. ~onsidw
tllc ullivariatc case of cstilnatillg tllc densi ty  j(x)
givcll saml)lcs  {xi}, 1 < i < IV, whCI’C p(-X’ <

1) = .f! ~, .f(a:)dz and J_K~ ~(x)dx  = 1 (1’ is a 1-
clilncllsiollal ralldo]a  variab]c,  x E [ -  cm, m] dmlotcs
values of X). Tl)c idea is quite simldc: onc obtains
all cstilllate ~(~’) l)y sumlning  the contrihtions of the
liClllCl K (x – z~ ) over all tllc samples and normalizing

such that the estimate is itself a density, i.e.,

(1)

wllcrt, )L is tl]c fm?t duidf}l of the estimator. j(x) di-
rectly  inherits tllc l)] qmrtics of K(f), hcncc it is com-
lt~on t o choose tllc l:crllel itself as a probability clcnsity
fund ion. A con]mo]k choice is the Gaussian kernel,
K(f) = *;C (1 ly)t”. ‘J’lIc  ~auclly  IWHIC1 is dcfillcd a s

K(t) = * wllc]e o is a scaling  factor.

A point x wllicl)  is close to many data points  xi will
rcccil’c  significant colltrilmtimls  from the kcmcls  as-
sociat ccl wit]l tllcsc  data points and thus the densityA
cstilllatc j(z) will IN large. A point x which is far away
frolo any l)oillts flz \vill o]lly rcccivc contributions from
tllc t:lils of tile associated kcmcls  and ~(z) will bc rel-
atively  mall. Altllolqj]  this idea is quite simple, it is
also (Iuitc powcrflll: it call bc shown that provided the
kernel functiml  itself oljcys ccrtaill  smoothness prop-
mtics  and tile lmlldwidtll  )L is chosen appropriately,
asyn]l)totical]y  as tllc ]Iumlm of data points goes to
infini ly, the mtiu  Iahr ~(T) will colwcrgc  to the true
density ~(x) (Ilalld  1982; Silverman  1986). The opti-
~nal (hoicc  of 1/, gi VCII  a fixed Imml)cr of data points
AT and a particu]al  kcrllcl function K(.), clepcnds  on
tile t 1 uc clcnsity  function  j(x) but s ince ~(x)  is un-
kllo}vll  (that is tlm oljjcct  of the cxercisc)  one m u s t
SO1I1C’]1OW fil)(] tll(’ “})(’St”  kUldWjdt]l  }1 fI’Olkl tile C@a,
If IL is cllosell to be too small then  the estimate ~(x)
al)~m)acllcs  a set of ddta functions  about each point
and Illc 7mria7Lcc of tllc esti]natc is too high. (30n-
verscly if h is cllosml too large, ~(T) aplmoachcs  the
sllal)(  of tllc ken ICI itself  al]d cffcctivcly igaorcs  t h e
data: the bias of tllc estimate is too lar.gc. l’hc  AI)-
l)clldix describes a widely used cross-validation schcmc
for fiI I ding a hldwidt]l  value IL from the clata: this is
a stal  ldard 1] Ict]lod i] 1 a] ]l)lid statistics for density cs-
timat ion and is the scllcmc used for all of tllc results
dcscl ibcd in this  l)allcr.

For tllc ~~ltllti-(li~ll(,llsiollal  case the product  kernel is
COmlllody Used:

(2)

Wllcl”(’

and d is tlm IIuInl)cr of dimensions, Zk denotes tllc
coml)oncnt  ill dilncllsioll  k of vector ~, K~ is the 1-
dimolsional  kcrllcl f o r  t h e  W climcnsion, ad t h e
/L~ r(lwcscllt  diffcrmlt 1 bandwidths ill each dimcmion.
‘1’llus the product l<(wIc1  consists of tllc procluct  of ollc-
dilnc]lsional  kmlels: ty])ically  in lmacticc  the same ker-
IIC1  f~ttlctioll is used ill cad dil[)cnsioll, i.e., K~(. ) =



K ( . ) ,  lmt  tlIc Imlldwidtl)s  arc allowd to differ. ‘1’hc
alternative to tllc ]mxiuct  lmmcl would h to usc a fall
lnultivariate kcmlcl ill Equatiol)  (2): perhaps a Gaus-
sian kcrnd witli  a full covaria]lcc  lnatrix, ‘J’llis IIlcthod
has not, lmm  foullcl  very cfltxtivc  in practice duc to
tllc fact  that tllcd(di 1)/2 bandwidth paramctcmfor
a sylnmchic Illatrix  ]nust bc cstimatd: the  product
kcr]lcl  only requires  the cstilllatcs of d bandwidths and
is widely rcco]nlncndccl  in tl)c litlcraturc  and typically
mm] ill })lacticalsit~latic)~ls. Altho@ tllcprcx!ud  kcr-
]Id uses kc77d  i7wlcpc7dc7Lccill F,quatioll  (3) this  docx
]~ot imply  t,flat ally form of aftribuk indcpcndencc  is
bcingassulncd: ill fact,  asilltllc l-dilllcnsional  casc,it
call lmsllowlltllat tllclmduct kmmd  cstimatcasyllll)-
totidly  al)~moacllcs tllc true clmlsity as the saml)lc size
Ar illcrcasm,  UIICIC,I tllc al)l~lol~riat,ca ss~llt~l)tiolls  ((;a-
COU11OS  1966).

3 CLASSIFICATION WJTH
KERNEI, DENSITY ESTIMATES

K e r n e l  dmsity cstilnation can Ix mm] as tllc bas i s
for a classification method as follows. Consiclcr  that
tllm’c! arc  7)1 CIass(!s, WI , . , ., W,,L and dcIIotc the d-
dilncllsiollal  attriblltc/fcatllrc vcdor as I;. As usual,
for classificatiml  lnoblmns, tllcrc  is a set of training
data available where for Cacll sanll)lc ~i, tllc true
class lalml is kImvlI. F’or cacll class wj, take  only
tllc training data that Lclo]lgs to class j allcl estimate

L(z) =-’ f(IIWj ) wlli~l) if+ tll~ d~llsity  ~s~itllat~ for tll~
data from that class (in isolation, dcrivd illdq)cll-
dmltly fmn tllc otllm  classes). ~J (z) cal i be cstinlatd
using tllc ]actllods  dcscrild  ill tllc last section. Baycs’
rule is tllml used for classification:

wllcrc tllc lmior or Inargillal  l)robabi]itics  of each class,
lJ(w,), arc  cstilnatcd from tllc data in tllc usual  fashion.

l’llis  classification ll]ctllod  IIas cxistccl  since tllc 1950’s
(oftcl) rcfcnd h as “1’arzcll windows”) but has not
scml Widcslncad  lmact,ical use. Onc rcasou for its lim-
ited  ap~)licat)ioll  ill l)racticc  h a s  bccm tllc computa-
tlimlal co~nldcxity of the Indllocl:  all of tllc data must
bc stored and all tl)c kcmcl  contributions sumlncd  to
Il)akc a classification cstilllatc. Ilowcvcr,  with lnodcwl
cmnlmtatlion  and Hlmnory cal)abilitics  this ~)ccd not bc
nmclI of a ])roldm[]  cxccpt  for very large data sets.

A xnorc fulldamclltal  )Moblcm  is the fact that, dcvlsity
cstilnatioll tmlds  to scale lmorly  as tllc dimcllsicnlal-
ity d of tllc IHol)lcln incmascs.  ]n part icular ,  i t  call
bc snow]]  tllcomtically (Scott  1992)  that to acllicve a
constant :ll)})loxilll:ltic)ll  cmor as tllc llumbcr  of dilncn-
sim)s grcm,s  OI)C IIccds cxlmncntial]y  mal]y ]norc cxaln -
IJcs. ‘1’bus, ill lwacticc,  dcllsity  Cstilaatio]l  tcchniqucx
arc rarcl,y used directly for lligll-clitllcllsiollal Imoblcms.

Natal ally, for c]assificatiori  tasks, this is a significant
drawl jack si]lce oftcll there lllay bc a large  number of
attril lutes o]~ly some of which arc relevant. IIccausc
tlm k~:rnc] chssifical  iol] ll~cthod builds  a dcllsity  mocld
for tllc data using all of the input dimensions it maybe
rclati  vdy  incflicicnt  ill its usc of the data comparcci to
a discriminative lactllod such as a decision tree which
constructs a ]nodcl usili~, only those climcnsions which
arc lmccssary to discrilllinatc  bctwccm classes. Thus,
give]) tllc desiral)]c lwol,al)ility  cstilnatioll properties of
kcrn(l  Incthods,  OI]C  is motivated tc) seek hybrid  kcr-
]lcl 11 Icthods wllicll o])ly usc tllc relevant discriminative
dimcllsions.

4 l~ECISJO.NT  TILEE D E N S I T Y
IMTIMATOIW

‘1’llc kcy idea wc il)i,roducc  ill this paper is as follows:
at cad)  node ill t I]c tree, estimate the posterior class
lwob:~bilitics (givm I,llc input data) using a multivari-
atc 1 ]roduct kcrIlcl density estimator, where the den-
sity tstimator m lly uses t]losc input features which
have bccIl usd in the branch partitions lcacling to that
IIodc.  lnt,uitivcly  tl](, lnctllod  trim to combine the bd,-
tcr aspects of botlI t rccs and dcllsity  estimators. l’hc
niotii’ation  is two-fold:

1.

2.

Probability lktimation:
improve tllc class 1 nobabilit  y cstilnation propcr-
1 ics of decision t rccs, l’mcs provide l)iccewisc cOn-
stant probability estimates which arc non-smooth
its onc crosses decision boundaries, i ,c., one will
t c~lcl to get vc] y difhcl)t class probability csti-
lnatcs  by dcscc] ldillg on either side of a noclc with
t hrcshold  t. l~urtl~crlnore,  tllc class probability
[Lst,itllat(:s will lm the  same  for all fO1’  inlnlts  &
which fall illt o a l)articular  leaf (or internal nocle):
1 hc exact  value of ~ is not used ill dctcnninin.g
1 IIc posterior l)lo~)tll.)ilitics.  For lmoblclns with a
fair dc,grm of uncertainty (the Ilaycs  error  rate
for tllc }ml~lct)l is relatively high) it is certainly
reasonable to cxlmct that the class probabilities
IIlay val y considcra}jly within a particular leaf or
tIOdC, c.g., ftOIll f~(wily) w 0.5 n e a r  the split, t o
))(wi[&) x 1.0 far away from the sl)lit. T’hc kernel
adcfitioll l)mposcd  licrc rcplaccs  the non-smooth,
picxxnvisc consl ant lnobability estimates at each
Icaf, with a s~llootll, noll-l)aramctric,  kcxnd  based
estimate of th{: l)ostcrior  probaljilit,y  function.

Problc]n  Dilnensionality:
rcducc  tlic I]uIII1.)c1  of variables wllicll must be in-
cluded ill tllc  I rmltivariatc  kcrIlcl density estimate
I )y using t hc i]lfonnation  providd by the clccisioa
tree structure, As discussed earlier,  kernel ]ndll-
OCIS will fail on lligll dimcusional  problems. The
l]ybrid ]nctl Iod seeks to identify the cliscrimina-
tivc di]ncllsiolls via the tmc structure and then
uses those di]nc]]siolls  to construct local density



cstlilllatjcs.

‘1’lIc  lwoposml  )nctllcxl (details of which arc proviclcc] ill
tllc llcxt  scciion)  call bc viewed as citllcr  a method  for
fitting  better lwol)abilit,y estilnatcs to trees, or a way
to construct, kcr]lcl  classifiers ill lligll dimcmsions  using
local cliscriminativc  il]forlnat,ion. III txmas of decision
trees, tllc lllctllod  in gcmcral is alqiicablc to both  (1)
tree design ancl (2) prediction using a particular tree:
tllc latter aslmct  can bc collsidcrcd  “retrofitting” an
cxistillg  tree sl,ructurc  with a dcllsity  estimator. In this
paper wc will only consider the “retrofitting” aslmct  of
the proMcIn there arc several interesting avenues to
cxp]orc ill tcnns of tree design Combillcd with density
cstilnatio]l,  but these arc not pmmcd in detail here.

‘1’l)c hybrid  density-tree idea is well-suit)cd to ccrtaill
killcls of proldc]m.  ]n l)articular  it is suited to lligll-
dimcmsiollal Iwoblcms wllcrc acxuratc  class probability
cstilnatcs arc clcsirablc and the Baycs error rate is not
too  low. If the I laym cmor rate for the problc~n is very
low, tllml all of the posterior class probabilities will bc
close to 1 or O and tllcrc is little advantage to using a
kernel density estimator and a standard decision tree
classifier should  h }mfcrrcd  (tllc  picmwisc  constant,
estimates of the trees will work fine). Silnilarly,  if the
lwoblcll] is low-dilncnsiolla],  tllcn  the kcnlcl  density
cstilaatlor  can h used clircctly.

5 DETAILS ON DECISION TREE
DENSITY ESTIMATORS

‘1’lic basic tree-dcllsity algoritllln  for the results dc-
scril)cd ill tl]is ])al)cr  o~x:ratcs  as follows:

1.

2.

3.

Density Estimation:
l{ull a kernel dcvlsity bandwid th  e s t ima t ion
IIlctllod o]l the training data (such as that dc-
scribcd  ill tllc Al)lmndix) to select bandwidths /tk,
1 < k < d, for each of the input climcmsions  and
for cac]l of the classes wj, 1 < j < m.

Decision Tree I)csign:
Gmlcratc  a classificatio]l  tree from the training
d a t a  usil)g a standard dccisioll trm desigu algo-
ritlllll,  e.g., ~Altl’, [;4, etc. If pralling  is l)art  of
the basic algorithm (as ill ~AIU’)  tllcll  produce a
~)ru]lcd  tree as tllc final result.

Retrofitting the Decision Tree for Predic-
tion:
‘1’o  lmforln class l)robal)ility  prcdictiol]  ml a ncw
clata l)oillt X:

3.1 l’ass  tllc test data poil]t dowl) the tree it]
the usual Inallllm  to a leaf )]odc.

3.2 Gc]lcratc  a local density csti]natc  for each
class as follows:

where k E patl[  dmlotcs  that the product is taken
( )ldy OVCI t,hosc at,tributcs  which appear in tests
(J]1  the path fro]!] t IIc root to that particular leaf,
IVj is the ]1oI1)1.N]  of training data points which

1 wlong to class Wj, and the sum ~~1 is taken
I o be over OI)IJ’ traini]lg  data points belonging to
(lass  wj.

3.3 Nstilnatc  tllc class probabilities, p(wj]y),
l)sing tl)c density  cstilnatcs f r o m  Equation  ( 5 )
folnl~itlcd with 1 laycs’ rule (Equation (4)).

Man~ variatiol]s  on this basic theme exist. For exam-
~)lc, tile density cstilllatcs could also h USCC1  as part of
the t J cc dcsigll I)] law. 1 laycsian  averaging over ol)tion
trees or smoothing  m’cr i~ltcmal noc]cs could also bc
incor) )oratcd  directly. Altcmativc density estimation
lnctllods  arc possible, SUC1l as locally adaptive meth-
ods or kernel tcclmiqucs  which avoid Baycs’ rule and
seek to cstinlatc p(ti,j 1~) clircctly (Lauclcr 1983) but
still llsc the illforlnation  ill the tree structure.

For tlic purposes of this l)apcr  wc have restricted our
atjtcl)tjion  to tlm sin]] )lc ~acthod dcscribcd  above in or-
der to evaluate tllc IJotwltjial  utility of tlm overall idea.

6 12XPER,IM  }’JNT’I’AI.  RESULTS

6 . 1  EX1’l’lIllhflI(~N’l’AI,  IIA’I’ASETS

IIi terms of lwobal)i]ity cstilnation, the class proba-
I)iliti(s  p(wjlxi))  w]lcre  ~;i, I < z < lV, i s  a  d a t u m
from the trai]ling  data set, are typically not known for
real-world training data sets: all onc typically knows
am t Ilc cluss-labels 1 mt not  the posterior probabili-
tics [’,ivcn Li. ~’llus,  to accurately assess the pwfor-
lnance  of a class lJml.)aLility estilnator one needs to
usc si mulatcd  clata for w]lich the tmc ~)osterior  proba-
bilities  arc kllowl~. (Note that a~l alternative approach
is to estimate the difference bctwccn  the probability
cstilllatcs  and tllc ttae lmohabilitics  via the half-~rier
scow (1 lm~til)c and (;araalla 1992), which essentially
subst itutcs “ 1” 01 “ O“ for tllc true probability clcpcnd-
ing 011 wllicl)  class is true however, this can h au
inaccurate estimate wllcll the sample size is small and
the I )robabilitics  thclnsclvcs  are not  near O or 1 ).

JVc cllosc sol nc dccq)tivcly  silnp]c simulated problems
to t(’st tllc IIlctllodology: varia~lts of a 2-class prob-
lem where tl[c data for each class are clistrilmted  in a
Gaussian  Inallllcl  wit]]  12 dilnclisions.  The  two classes
diffcl oldy ill 1 or 2 dilncllsiolls  depending on the prob-
lem: thus,  fronk a discrilniliatioll/classification  point  of
view there arc 11 or 10 irrelevant noise clitocnsiom.

● 1 ‘roblcnL 1: ‘1 ‘he two classes cmly differ in 1 climcn-
sion, III ❑ 0, pq =- 1, al = fsz = 1: thus, t he re  i s
significant ovclla]) ill this climellsioll.  Both  classes
are cqual]y ]ikcly. ‘1’lle 1 laycs error rate (the min-
imum acllicval)lc crrol rate for the problem) is



about 0.31. l’hc  other 11 dimensions am inde-
]mlldcmt allcl consist  of zero-mcatl unit-variance
Gaussiat]  Iloisc. ~’l]c optima] decision rule for the
l)roblc]]l  consists of a sillglc split along the first
dilumlsion.

● l’mblma  2: ‘1’llis  is tile same as l’roblcm  1 cxccpt
that tllc lncan  of tllc scconcl class is now )12 ==
(ti/2, {2/2)  in tllc first  two dimrxlsiom  and the
covanallcc  matrix ill t,lle first two climcmions is
0.51 wllcrc J is the idcmtity lnat,rix. The mean fo~
all dilncllsio~ls  (cxccl)t the first two dimensions
of class 2) is zero: Sc) the ot,hcr 10 dimensions
arc irrclcvallt.  Tile  optimal decision boundary for
this  problcm  is o)lly a function  of tllc first two
dilncllsimls  Imt is cluadrat,ic rat,llcr than l i nea r .
‘1’lIc  IIaycs error  rate is al)out  0.23.

●  l’rob]cln  3 :  class ] i s  dis(,li~)utCd  ill tllc salllc
IIlallllcr as ill ]noblcms  1 and 2, Imt class 2 is now
a Inixturc  of 2 colnl)oncllts  ill the first 2 dimcn-
siolls: O])C is ccntlrcd at (- @, – @), the other
at (~, ~) a n d  cacll com])oncntl has covariancc
matr ix  of  0.51. Class ollc is dcfillccl to have a
])rior  probability of 1/3 and class 2 2/3 for this
]ml)lcln.. (hlcc again t h e  mca]l f o r  all dinlcn-
siolls (cxcq)t  tllc first  two dilnmlsions  of class 2 )
is 7,cro: so tllc otllcr  10 dimcmsiom arc irrclcvmt
and tllc o] Aimal decision boundaries arc a Hon-
lillcarfunctioll oftllcfirstt woclilllcllsic)llsf  ortllc
]woblcnn.  I’l)c Ilaycscrlorr  atefort,llisp roblc~ll is
cstilnat,cd  to be about 0.14.

Several otllcr  simulated ]wohlmns  wcm usccl to tmt the
ltlctllc)dologyl)l]t  arc not  rq)ortcxlhcrc. all wcm vari-
ants of low-dimmlsional  Gaussian or lnixturc  of Gaus-
sialls  cvr)bcddcd  ill a higllcr  climcmsio~lal sl)ac.c. In a l l
cxlmritncnts  the results wcxc qualitativclythc same as
those dcscrilmd  Mow.

6.2 EXI>ERIMEN’I’AL  M E T H O D O L O G Y

Wc lnonitorccl  both  tl)c classification error  rate and the
]mobability  cstilllatioll  error for a variety of classifiers
as a functio]l  of saln~ic  size. Wc varied saln]ie training
sizes fro~n  S to 2048. M’or a givcnl saln]dc size, 20 il]cle-
]mldult  t,rainillg sets wcm gmlcratcd  according to the
])rol.)al.)ility  ]rloclcls  dcscribccl almvc (for l’roblcms  (1 ),
(2) and (3)). ]’;ach classifier was trained oli each of the
2 0  indc]mldclltj  t,railling dat,ascis.  ‘1’hc  error rat,c o f
cacll Classifier, for a givcm training data set for a par-
ticular saIIl]ic  si7,c, was evaluated cnnpirically on all
illdC])(UIC]C’llt  kSt Sd of 3000”  SEUIIPIC!S.  ‘~llC ~fXLTL  (!ll’0~

rate of a lmrticular classifim  over tllc 20 training clata
sets  was t,llcnl calculat,cd,  along wit]) tllc standarcl  de-
viation.  our cxlmilnclltal results arc tlms  in the form
of Illcal) error  rates for a givml classifier as a function
of saln]dc  size. ‘J’llc standard dcwiatiolls of the means
arc not, SIIOWII  011 the graldls  to rcducc  clutter.

Gdculatioll of classification  c7707 rat[: 01] tl,C t[:st sCt
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Figul c 1: Mean al ~so]ut  c error  for class probabilities
as a fullctiou  of training sam~)le  size for Problcm  1

was (arriccl  out  ill tllc standard manner. calculation
of tht estan~aiion cwor jor class probabilities typically
call lw carried  ollt using a variety  o f  m e t h o d s .  W e
CllOs(L to usc the lncali  absolute distance:

wlmx’ Ari,. t is tllc ]IIIIIIlm of test data points.

6.3 CLASSIFIEl{,S  U S E D

For our standard dccisiml tree classifiers we used both
tllc {’AIU’  and ~4 algorithms as implcmentccl  in the
IN]) software ]Jackagc (Iluntinc  and Catuana 1992),
using, default scttins,s.  For density estimation we used
tl]c ])roduct  kcrucl densi ty  method  clcscribcxl  in Scc-
tiolls  2 and 3 (allcl cross-validation method  as in the
A])pc]lclix). \Vc cxl)erilnclltcc] with both Gaussian and
(;aucl]y kcmcl  sl]a]m (Silverman 1986) to get a rough
idea (If the smsitivity of the mcthocl to kcmcl  shape.
ftrc a]so itlcludcx]  a lllaxil nun-likelihood C;aussian c]as-
sificr using sc]matc full covatiancc  lnatriccx  which are
C! Still liitCd froln tl]e {I at a for each class.

Othc] dccisioll tree ~nctllods  wmw cxperimcmtcd  with,
such as 11)3. II) gmlcral wc found that trees  that did
not usc prunitig  or c1 oss-validation  WCN unable to find
tllc r{lcvant  dimensions for the lnmblcm and, tlms,  the
results am not show]  1 ml the plots.

6 . 4  D I S C U S S I O N  OF E X P E R I M E N T A L
RESULTS

Figul m 1 and 2 show tllc probability estimation er-
ror a) Id the classification] error rate, rcspcctivcly,  as a
function of saln]dc size for l’roblcm  1. IIoth  figures
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Figure 2: Meau classification cmor as a function of
traini)lg  saloldc  size for I’roblcm  1

clearly dmnollstratc  tlllc bcnlcfit of using ol)ly  the rclc-
vallt  di]nm)sio])s:  the full Gaussian atld density estima-
tion  moclcls  (Gaussian ancl DE, rcspcctivcly)  converge
slowly to the o])timal  error rates, while tfle methods
wllicll try to select the relevant dimr.msiom  (CART and
CAR1’:1)]’;(C;  ) ) arc  substantially more  acmratc. The
“(;” iu “CAIU’+l)lt(G)” and “ D E ( G ) ’) rcfm to the
fact that, for this lNoblcIn  tllc results arc shown  for the
dcnsit~  cstimatlioll  mcthcrd  usi]lg the Gaussian kernel.
CAIVI + 1)11 is si.rylificantly  better than CART alone
ill tcrllls  of l)robability  approximation (Figure 1 (a)) as
ollc lnigll( cx])cct.

Note  that CAIU’ dots  not, convcrgc to the o] Aimal
asylol)totic  error of zero as tllc samldc  size incrcascs
duc io its I)icccwisc  constant lmobability  e s t i m a t i o n
function  wllicll acts as a llol]-zero bias term inclclJcn-
dcnt  of tllc sample size. It is also worthy of note that
for these data sets, CAIU’ performs significantly bet-
ter than C4. Wc sus])cct that tllc reason for this is that
tllc prullillg  lnctllods  used in CART llal)pcn to bc more
aplnq)riatc  for tllcsc  ]moblcms  whcm tllc optimal dc-
cisioll tree soluticn] consists of a very mall decision
tree. 111 order to avoid clutter in the presentation of
tllc rcmlts, wc slNw Illc results of the tree+-density
Inctllod  oldy for CAIN’. Wc ])roviclc  tllc C4 curve just
as rcfcrmlce l)asc]inc for IIow another tree algorithm
pcl’foms.

111 t,crlns o f  C.lassificatioll a c c u r a c y  (1’’igorc 2 ) ,
CAIVI’+-DN  a])pcars  s l ight ly more accurate  tllau
CAIU’ altllougll  this difrcrcncc is lmobably not  sigrlifi.
cant,  ‘1’llis  is IIot surprisil]g  since onc would cxl)cct oll
average tlmt if a ]]lodcl ])ro(luccs  more accurate class
]mobal~ility estimates that it will alsc) bc more accu-
rate in its classificatio~ls altl]ough  clearly this ncccl not
always bc true sillcc tl)c Inillimum error rate classificl
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Fire] c 3: Mca~l almlutc error for class l~robabilitics
as a function of trail lil)g samlJc sin:  for I;roMcm 2

~lccd only how whcl c tllc optimal clccision bomclarics
arc 1( ]catcd imx])cctivc  of the values of the class prob-
ability ies.

‘1’hc mrvc for dcllsity  cstimatioll  in 12 dimensions (la-
beled DE(G)  or IJ13(C)  in the figures) shows how clcn-
Sity CStilI12LtiOU  ]J(’llCfitS ft’olll thC!  diIllC!llSiOdity  Z’d~lc-

t ion I movir!cd by tl (c tree structure. Without the tree
aclclit ion (CAW1’+  1)11), the density cstimatioll method
(DE) is c]uitc i~laccllratc.

The  Gaussian  clas<ificr,  which is asymptotically the
opti) [ Lal classifier fol this problcln,  exhibits the usual
~j s(aling  pmfomallcc, where IV is the number of
training saml)lm: ~lotc tflat CVCIL at 2 0 4 8  saml)lcs it
still IIas not rcacllcd the accuracy of the CART+-DF.
ll-lct]lod.

For 1 ‘roblcm 2 wc show tile results for the Cauchy  kcr-
]IC1 (CAIU’+  I) N(C)) to illust,ratc  that for these prob-
lems at least tllc tree-l dcusity  mcthocl  dots not ap-
pear over-sclmitivc to the exact shape of the kcmcl
used in the dcl]sity cstil[)ation  pllasc.  17igurcs 3 and 4
show tllc Inc)lml)ility approxilnation  error  and classifi-
cation  error rcslwclivcly  as a fmlction  of sample size.
‘1’hc results are qualitatively similar to those obtainccl
for 1 ‘roblc]o  1, IIaloc]y that the CART+-DE  method
outlmforms tllc oll]cr  ]ncthods  over a wiclc range  of
sam] )lc sizes: tllc o]Ily difl’crcllcc  is that the Gaussian
mod(l  convcrgcs more quickly as a function  of sample
size for this l)rol)lclll, mlativc  to the others, probably
duc 10 the fact that, 2 of 12 dimensions are now rckwant
ratl](r than just, OIIC  ill the first  problcm.

F’igutcs 5 and 6 sl]ow  t h e  c o r r e s p o n d i n g  r e s u l t s
for 1 ‘roblcm  3. 1 lcrc wc plot only the tree and
tree-l density results to clearly demonstrate the bene-
fits of tllc rctrofittil]g  a])lmoach.  Both CAIU’+-DE(G)



.

0,5

Mean
Claswflcatlon

Error Rate 045
on lest

Data

0.4

0.35

0.3

Mean Classification Error Rate

1% “. .

O*S L , i_..UJ  ..,.., .L..  .U.  . Q ~ . -
10 100 1000

T ramng  Sample Size

Figure 4: Mean classificatiml  crrcm as a function  of
haillillg saln]dc  sim for l’roblcln  2

and CA IU’+I)lt(C)  drxnillate  L1lC lmformancc of the
tree mcillods  over a wide variety of sample sizes. ~’lw
Gaussia)l  kcnlcl  lllc%llod out]mrforms  the Cauchy kcr-
IIC1  ]nctllocl, probably duc to tl)c fact  that underlying
dmlsitics  for tllc l)roblcIn arc themselves Claussian, and
CAIU’ outlmrforlns  C4 duc its tendcmcy h prone  t o
smaller trees.

‘J’llc mail) ]Joillt to note from tllc cxpcrimmtal resllltS
ill total is that tllc trcc+dcnlsity  mcthocls can provide
sigylificant ilnprovemclltl  in tmms  of class probability
cstilnatioli across a variety of ]moblcms  and trai~lillg
sample sires, w]lilc the classification accuracy of the
resulting  trcw is not affcctcd adversely and ill many
cam appears to IN slightly improvml. !l’hc empirical
results, colnl )illcd with our understanding of the basic.
theory, itldicatc that tlm combination of robust  tree al-
goritlllns  and accurate dcnlsitjy estimators can produce
useful results.

7 RELATED WORK, EXTENSIONS,
AND DISCUSSION

IIulltillc  (1 993) ilwcstigatcd  a Ilayesian  approach to
lmtll tree design and ]ncdiction.  l’or class ]Jrol~abil-
ity prcdictlion,  IIunti]lc  advocates averaging tile class
lwobal)ility  estimates olhaillcxl at intcnlal llodcs in or-
der to get tllc lmst cstilllatc and also discusses avcra~-
illg over lmlltil)lc  tree structures ( “ol)tioll trees” ).

walk~r (] 992) l,as i])v~f+tigat~d tl~~ followil}g  prOblCIll:

using tllc salnc  data to .gcxlcratc  tllc class probal)il-
ity cstilnatcs as is used to design the tree will result
ill biased cstilnatrx in ]wact,ice since the tree clcsi?,ll
]moccss favors sldittillg tllc fcatum sl)acc into rc.gio]ls
whcm tllc class probabilities appear to bc ILcar  mu

or one. Walkm  illvcstigatcd  tl)c usc of various cross-
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Figul c 5: Mcall absolute error  for class probabilities
as a function  of training sanll)lc size for ProMcm  3
(mixiurc  classificatio]l  proldcm)

validation strategies to clcal with this problem  and
dcm(nlstratcd  im]wovcd lnobabilitly  estimation pcrfor-
matltc colnl)aml  to tllc sta]ldard  approach.

Ilot}i of these aI)l }roaclms comldcmcmt the gene r a l
mctl  iod prol)osed in l,llis paper  ancl illdcccl the methocl
pro] ,oswl here could likely bc im]movccl  upon were it to
incc)l porate eitllcr  of tllc 1 layesiall  or cross-valiclation
strategies.

Frimlmau  (1995) l)ro~)oscx  sophisticated clata-drivml
classification strategies which dcpmd on local sclcc-
tio~i of relevfi]lt distance metrics for near neighbor
type algorithms. ‘1’lle overall approach is partly mO-

tiva{ cd by sinlilar  conccms  to those expressed in this
l)apm,  namely, that standard decision tree methods
arc limited to ~)i(>ce}visc-collstallt  class probability es-
tinmtcs.  IIowcver, l“riedlnan’s work appears primar-
ily I ilotivatcd  by a desire  to improve moclcl prediction
ca])i[bilitics , mmlt illg ill complex ]nodcls which are
rxsc]ltially  llcarc:st-llci~~ll>or  ill form atld (unlike the
met hod pro])oscd lmrc) do not POSSCSS  the unclerstaml-
ability of the dcc.ision  tree stmcturc.

As I ncwtioned  earlier, there am a variety of potential
extrusions of the 1 )asic method clcscribecl here. Dc-
cisi( m tree dwlsity  cstilnators can in principle can h
cxt ~’lidccl to rcgressio:l trws, trees with  multivariatc
splits, smoothed class I)roba})ility  lnwdiction  over inter-
nal noclm, avcragil  tg over multiple trees and so forth.
1’11(  use of density cstilnatioxl  during  dccisioll tree clc-
sigl 1 is also possil Jc: for slna]l salnple  sires at nodes
beil g considcmxl  for s] dits, the density estimate coulcl
ser]c to im] move tllc cstimatm of s])lit criteria and pcr-
ha] )s produce lnorc rciincd  estimates of the location of
tlw best split.
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Fmn a density estimation viewpoint, the proposcxl
lncthod  is probably most closely rclakxl  to projcctio))
])ursuit  density cstilaation (Silvcnmall 1986): i~i this
mct!llocl, “intcmsting”  low-dimcmsional projections of
a lligl]-dilllcllsiollal  datasct arc found and clcnsity cx-
tlimatioll  is ~)crfomcd  in this low’-(lilllc~lsiollal  projec-
tion. ~’his tccl]liique  is usually carried out  in the con-
text of ulwu~)crviscd  lcarlling  or clustering. l’hc  pro
lmscd dmision  tree density cst)imators  coulcl bc viewed
as a supcrviscfl lcarni]lg  analog  to the pmjcction puJ -
suit  mctllocls.

A rcasonab]c  question to ask is whether onc samific.m
illc illtcll)rctal.)ility  of a decision tree classifier using
this mctl)od?  ‘J’llis  should not  bc the case. !l’hc sWlc-
tuzw of tl)c I,rco is rctail]cd  but a more complicated
kcrnol model is used for pwcliction.  ‘1’hus a user can
s t i l l  illte).prct,  the s t r u c t u r e  o f  tllc t r ee  ill tcllns o f
wllicll varial)lcs  arc  rclcvallt  to the classification prol )-
lcln, lmt utldcrlyill.g tllc tree structure is a more conk-
l)lcx, lnclnory-bascdj  ]wcdictim  schclnc (which is not
of dircc~ ccmcm] to the mscr).  Thins, for cxplanatiol]
]mr]mscs o]]c can still retain the tree structlurc.

8 CONCLUSION

A novel lncthod  for co]llbilling decision trees ant] ker-
])cI densi ty  cstilnators was pmposcd.  on simlllated
data sets tllc lnctllod  was dclllonstratcd to provide i] n-
]wovcd ]Jcrforlnallce  in terms of class probability csti-
Inatiol] mm’ citl]cv trees or dclisity  methods alom. The
Inctllod  is ])articularly  useful for classification pmb-
lcnns wllcrc class probability cstilnates arc ilnporta?lt,
alId wlIcrc tllcm is a rclativc]y  slnall amount  of traini-
ng data relative to ihe dilncnsionality  of tllc problmn
(whicl, frcqucl]tjly  occurs in IIractical  Iwoblcms  of i~,-
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Appendix: Univariate  Bandwidth %lcction
for Kernel Density Estimation

Clloim  of a good bandwidth value h can be difficult.
~’llc theoretically optlilnal value (in tcrnls of minimis-
i]lg tl)c Inca]] illt,cgratcd  square error lmtwccn the es-
timate and tllc true density) is a function of the ull-
kllowll(lcllsityf(g).  IIc~lce, i]l])racticc, valiollsclata-
dcpcmdcnt  tcchliqucs am used to estimate h from the
data. Clloosil]g h too slnal] results ill a very %~)iky”
estimate, while too large a value for IL smooths out
tllc details. ~’llc maxilmm likclilloocl solution for h
is dcgcmcratc  ill tllc scllsc that choosing lL = O lnax-
illliscs tllic likelihood rcsu]ting  in a density estimate
wllicll has deltaful]ctions at each training datapc)int.
]Icncc,  cross-validation techniques llavc lmcn wiclcly
uscxl in lwactic.c  (Silvcrlnall  1986). Onc such method
is to lnaximiscthc “])sclldo-lil<elilloocl”: ]ctting

tllc o])tilnal  cross-validation clloiccis

‘1’hcncgativcof the term in brackcts  can h s11ow11 to
l.m all ullb~ascd  cstilnator of tllc cxlwctcd  cross-cntrolJJ’
Imtwccw  j(z) and j(x). All altcmlativc  to l ikelihood
cmss-validation} is least-squares cross-validation.

l’ortlLcrc s~Il~slc l>c)rtcciitl tllisl)a~)erw ccstirllatetli{
bandwidtl)  illcacll (lilllcllsioll, fc)rcacll  class, illclcl)cll-
dmtly. I’llc clata is initially scaled ill each ditncnsioli
to llavc unit varia]lcc  and zero mean. Then, lwv is
found using all Cxllamtivc.g  rid scarcll whcrcthc  grid
width is O.01 allcltllcscarcllisc)vcrl~~ [0.2,0.8].


